Reproduce economic indicators from ‘The Economist’

Economic data (% change on year ago)
Gross domestic product
Industrial production
Consumer prices
Unemployment rate, %
latest quarter* 2020 2021 latest latest 2020 latest
United States -2.5 Q4 +4.0 -4.3 +3.1 -3.6 Dec +1.4 Jan +1.5 +6.3 Jan
China +0.1 Q4 +0.5 +1.9 +8.2 +5.4 Nov +0.2 Dec +2.9 +4.2 Q4
Japan -1.1 Q4 +12.7 -5.3 +2.3 -4.2 Dec -1.2 Dec -0.1 +2.9 Dec
Britain -7.8 Q4 +4.0 -9.8 +5.9 -3.3 Dec +0.8 Dec +0.8 +5.0 Oct
Canada -3.5 Q4 +7.8 -7.1 +5.2 -5.2 Nov +1.0 Jan +0.6 +9.4 Jan
Euro area -5.0 Q4 -2.4 -8.3 +5.2 +0.1 Dec -0.3 Dec +0.4 +8.3 Dec
Austria -7.8 Q4 -16.0 -6.7 +4.6 +0.1 Nov +1.2 Dec +1.2 +5.8 Dec
Belgium -4.7 Q4 +0.8 -8.3 +5.4 -4.7 Dec +0.3 Jan +0.6 +5.8 Dec
France -5.0 Q4 -5.3 -9.8 +6.0 -3.0 Dec -0.0 Dec +0.5 +8.9 Dec
Germany -3.9 Q4 +0.4 -6.0 +4.2 -1.1 Dec +1.0 Jan +0.5 +4.6 Dec
Greece -11.7 Q3 +9.5 -9.5 +4.1 +3.7 Dec -2.0 Jan -0.6 +16.7 Oct
Italy -6.6 Q4 -7.7 -10.6 +5.2 -1.9 Dec -0.2 Dec +0.1 +9.0 Dec
Netherlands -3.0 Q4 -0.5 -5.4 +4.0 -1.1 Dec +1.6 Jan +1.2 +3.9 Dec
Spain -9.1 Q4 +1.6 -12.8 +7.2 -0.6 Dec +0.5 Jan -0.2 +16.2 Dec
Czech Republic -5.1 Q4 +1.2 -6.5 +5.1 +1.4 Dec +2.2 Jan +3.3 +3.1 Dec
Denmark -3.1 Q4 +2.4 -4.5 +3.5 -1.4 Dec +0.6 Jan +0.4 +5.8 Dec
Norway -1.1 Q4 +2.6 -2.8 +3.6 +1.6 Dec +2.5 Jan +1.4 +5.0 Nov
Poland -2.8 Q4 -2.8 -3.6 +4.6 +6.9 Dec +2.4 Dec +3.3 +3.3 Dec
Russia -3.3 Q3 +6.1 -4.1 +2.8 -1.0 Dec +4.9 Dec +3.2 +6.1 Q4
Sweden -2.6 Q4 +2.0 -4.7 +3.5 -1.5 Nov +0.5 Dec +0.8 +8.7 Dec
Switzerland -1.7 Q3 +31.9 -5.3 +3.6 +5.4 Q4 -0.5 Jan -0.8 +2.4 May§
Turkey +5.4 Q3 +78.4 -5.0 +5.0 +10.7 Nov +15.0 Jan +11.9 +12.9 Oct
Australia -3.8 Q3 +14.0 -4.2 +3.0 -2.0 Q3 +0.9 Q4 +0.7 +6.6 Dec
Hong Kong -3.4 Q3 +11.8 -7.5 +3.7 -7.4 Q3 -0.2 Nov +0.3 +6.5 Q3
India -7.5 Q3 +121.1 -10.3 +8.8 +2.6 Dec +3.7 Dec +4.9 +7.1 Year
Indonesia -2.1 Q4 +12.0 -1.5 +6.1 -3.7 Apr§ +1.6 Jan +2.1 +3.1 Q1
Malaysia +4.7 Q4 +14.7 -6.0 +7.8 +3.1 Mar§ -0.2 Mar -1.1 +4.7 Q3
Pakistan -0.4 Year NA -0.4 +1.0 +7.9 Sep +8.0 Dec +10.7 +4.4 Q2
Philippines -0.1 Q1 -19.1 -8.3 +7.4 -9.9 Aug +2.5 Mar +2.4 +2.6 Q1
Singapore +1.0 Q4§ +3.1 -6.0 +5.0 +17.8 Nov -0.1 Nov -0.4 +3.1 Q4
South Korea -1.3 Q4 +4.4 -1.9 +2.9 +2.0 Dec +0.6 Jan +0.5 +5.4 Jan
Taiwan +3.0 Q4§ NA +0.0 +3.2 NA +0.7 Q4§ -0.1 +4.1 Q2
Thailand -12.1 Q2 -33.4 -7.1 +4.0 -6.6 Q1 -0.3 Dec -0.4 +1.1 Q3
Argentina -0.1 Q3 +0.5 -11.8 +4.9 +4.4 Q3 +38.5 Jan NA +11.9 Q2
Brazil -3.9 Q3 +34.6 -5.8 +2.8 +5.6 Dec +4.6 Jan +2.7 +8.0 Nov
Chile -10.3 Q3 +22.6 -6.0 +4.5 -4.7 Dec +3.1 Jan +2.9 +11.1 Nov
Colombia -9.5 Q3 +39.6 -8.2 +4.0 -1.1 Dec +1.6 Jan +2.4 +14.6 Dec
Mexico -5.2 Q4 +13.0 -9.0 +3.5 -29.3 Apr +3.5 Jan +3.4 +4.2 Dec
Peru +2.1 Q1 -16.9 -13.9 +7.3 +20.3 Apr +1.8 Mar +1.8 +8.0 Q2
Egypt +3.5 Year NA +3.5 +2.8 +6.2 Mar +3.6 Nov§ +5.7 +7.9 Q4§
Israel -1.1 Q3 +39.7 -5.9 +4.9 +2.6 Nov -0.7 Dec -0.5 +4.8 Dec
Saudi Arabia -0.3 Q4§ +22.3 -5.4 +3.1 +1.6 Q3 +5.7 Jan +3.6 +6.0 Year
South Africa -6.1 Q3 +66.1 -8.0 +3.0 +1.3 Aug +3.1 Dec +3.3 +30.5 Q3
Source: DBnomics (Eurostat, ILO, IMF, OECD and national sources). Click on the figures in the `latest` columns to see the full time series.
* % change on previous quarter, annual rate IMF estimation/forecast 2020 § 2019



The aim of this blog post is to reproduce part of the economic indicators table from ‘The Economist’ using only free tools. We take data directly from DBnomics. The DBnomics API can be accessed through R with the rdbnomics package. All the following code is written in R, thanks to the RCoreTeam (2016) and the RStudioTeam (2016). To update the table, just download the code here and re-run it.

if (!"pacman" %in% installed.packages()[,"Package"]) install.packages("pacman", repos='http://cran.r-project.org')
pacman::p_load(tidyverse,rdbnomics,magrittr,zoo,lubridate,knitr,kableExtra,formattable)

opts_chunk$set(fig.align="center", message=FALSE, warning=FALSE)

currentyear <- year(Sys.Date())
lastyear <- currentyear-1
beforelastyear <- currentyear-2
CountryList <- c("United States","China","Japan","Britain","Canada",
                 "Euro area","Austria","Belgium","France","Germany","Greece","Italy","Netherlands","Spain",
                 "Czech Republic","Denmark","Norway","Poland","Russia","Sweden","Switzerland","Turkey",
                 "Australia","Hong Kong","India","Indonesia","Malaysia","Pakistan","Philippines","Singapore","South Korea","Taiwan","Thailand",
                 "Argentina","Brazil","Chile","Colombia","Mexico","Peru",
                 "Egypt","Israel","Saudi Arabia","South Africa")

Download

gdp <- rdb("OECD","MEI",ids=".NAEXKP01.GPSA+GYSA.Q")
hongkong_philippines_thailand_gdp <- 
  rdb("IMF","IFS",mask="Q.HK+PH+TH.NGDP_R_PC_CP_A_SA_PT+NGDP_R_PC_PP_SA_PT") %>% 
  rename(Country=`Reference Area`) %>% 
  mutate(Country=case_when(Country=="Hong Kong, China" ~ "Hong Kong",
                           TRUE ~ Country),
         MEASURE=case_when(INDICATOR=="NGDP_R_PC_CP_A_SA_PT" ~ "GYSA",
                           INDICATOR=="NGDP_R_PC_PP_SA_PT" ~ "GPSA"))
malaysia_peru_saudi_singapore_gdp <- 
  rdb("IMF","IFS",mask="Q.MY+PE+SA+SG.NGDP_R_PC_CP_A_PT+NGDP_R_PC_PP_PT") %>% 
  rename(Country=`Reference Area`) %>% 
  mutate(MEASURE=case_when(INDICATOR=="NGDP_R_PC_CP_A_PT" ~ "GYSA",
                           INDICATOR=="NGDP_R_PC_PP_PT" ~ "GPSA"))
taiwan_gdp <- 
  rdb("BI/TABEL9_1/17.Q") %>% 
  mutate(Country="Taiwan",
         MEASURE="GYSA")
egypt_pakistan_gdp <-
  rdb("IMF","WEO:latest",mask="EGY+PAK.NGDP_RPCH") %>% 
  rename(Country=`WEO Country`) %>% 
  mutate(MEASURE="GYSA") %>% 
  filter(year(period)<currentyear)
china_gdp_level <- 
  rdb(ids="OECD/MEI/CHN.NAEXCP01.STSA.Q")
gdp_qoq_china <-
  china_gdp_level %>% 
  arrange(period) %>% 
  mutate(value=value/lag(value)-1,
         MEASURE="GPSA")
gdp_yoy_china <-
  china_gdp_level %>% 
  arrange(period) %>% 
  mutate(quarter=quarter(period)) %>% 
  group_by(quarter) %>% 
  mutate(value=value/lag(value)-1,
         MEASURE="GYSA")
argentina_gdp_level <-
  rdb(ids="Eurostat/naidq_10_gdp/Q.SCA.KP_I10.B1GQ.AR") %>% 
  rename(Country=`Geopolitical entity (reporting)`)
gdp_qoq_argentina <-
  argentina_gdp_level %>% 
  arrange(period) %>% 
  mutate(value=value/lag(value)-1,
         MEASURE="GPSA")
gdp_yoy_argentina <-
  argentina_gdp_level %>% 
  arrange(period) %>% 
  mutate(quarter=quarter(period)) %>% 
  group_by(quarter) %>% 
  mutate(value=value/lag(value)-1,
         MEASURE="GYSA")
gdp <- bind_rows(gdp,hongkong_philippines_thailand_gdp,malaysia_peru_saudi_singapore_gdp,taiwan_gdp,egypt_pakistan_gdp,gdp_yoy_china,gdp_qoq_china,gdp_yoy_argentina,gdp_qoq_argentina)

indprod <- rdb("OECD","MEI",ids=".PRINTO01.GYSA.M")
australia_swiss_indprod <- rdb("OECD","MEI","AUS+CHE.PRINTO01.GYSA.Q")
china_egypt_mexico_malaysia_indprod <-
  rdb("IMF","IFS",mask="M.CN+EG+MX+MY.AIP_PC_CP_A_PT") %>% 
  rename(Country=`Reference Area`)
indonesia_pakistan_peru_philippines_singapore_southafrica_indprod <-
  rdb("IMF","IFS",mask="M.ID+PK+PE+PH+SG+ZA.AIPMA_PC_CP_A_PT") %>% 
  rename(Country=`Reference Area`)
argentina_hongkong_saudiarabia_thailand_indprod <- 
  rdb("IMF","IFS",mask="Q.AR+HK+SA+TH.AIPMA_PC_CP_A_PT") %>% 
  rename(Country=`Reference Area`) %>% 
  mutate(Country=case_when(Country=="Hong Kong, China" ~ "Hong Kong",
                           TRUE ~ Country))
indprod <- bind_rows(indprod,australia_swiss_indprod,china_egypt_mexico_malaysia_indprod,indonesia_pakistan_peru_philippines_singapore_southafrica_indprod,argentina_hongkong_saudiarabia_thailand_indprod)

cpi <- rdb("OECD","MEI",ids=".CPALTT01.GY.M")
australia_cpi <- rdb("OECD","MEI",ids="AUS.CPALTT01.GY.Q")
taiwan_cpi <- 
  rdb("BI/TABEL9_2/17.Q") %>% 
  mutate(Country="Taiwan")
other_cpi <- 
  rdb("IMF","IFS",mask="M.EG+HK+MY+PE+PH+PK+SG+TH.PCPI_PC_CP_A_PT") %>% 
  rename(Country=`Reference Area`) %>% 
  mutate(Country=case_when(Country=="Hong Kong, China" ~ "Hong Kong",
                           TRUE ~ Country))
cpi <- bind_rows(cpi,australia_cpi,taiwan_cpi,other_cpi)

unemp <- rdb("OECD","MEI",ids=".LRHUTTTT.STSA.M")
swiss_unemp <- rdb("OECD","MEI",mask="CHE.LMUNRRTT.STSA.M")
brazil_unemp <- rdb("OECD","MEI",mask="BRA.LRUNTTTT.STSA.M")
southafrica_russia_unemp <- rdb("OECD","MEI",mask="ZAF+RUS.LRUNTTTT.STSA.Q")
china_unemp <- 
  rdb(ids="BUBA/BBXL3/Q.CN.N.UNEH.TOTAL0.NAT.URAR.RAT.I00") %>% 
  mutate(Country="China")
saudiarabia_unemp <-
  rdb(ids="ILO/UNE_DEAP_SEX_AGE_RT/SAU.BA_627.AGE_AGGREGATE_TOTAL.SEX_T.A") %>%
  rename(Country=`Reference area`) %>%
  filter(year(period)<currentyear)
india_unemp <-
  rdb(ids="ILO/UNE_2EAP_SEX_AGE_RT/IND.XA_1976.AGE_YTHADULT_YGE15.SEX_T.A") %>%
  rename(Country=`Reference area`) %>%
  filter(year(period)<currentyear)
indonesia_pakistan_unemp <-
  rdb("ILO","UNE_DEAP_SEX_AGE_EDU_RT",mask="IDN+PAK..AGE_AGGREGATE_TOTAL.EDU_AGGREGATE_TOTAL.SEX_T.Q") %>% 
  rename(Country=`Reference area`)
other_unemp <-
  rdb("ILO","UNE_DEA1_SEX_AGE_RT",mask="ARG+EGY+HKG+MYS+PER+PHL+SGP+THA+TWN..AGE_YTHADULT_YGE15.SEX_T.Q") %>%
  rename(Country=`Reference area`) %>%
  mutate(Country=case_when(Country=="Hong Kong, China" ~ "Hong Kong",
                           Country=="Taiwan, China" ~ "Taiwan",
                           TRUE ~ Country))
unemp <- bind_rows(unemp,brazil_unemp,southafrica_russia_unemp,swiss_unemp,china_unemp,saudiarabia_unemp,india_unemp,indonesia_pakistan_unemp,other_unemp)

forecast_gdp_cpi_ea <- 
  rdb("IMF","WEOAGG:latest",mask="163.NGDP_RPCH+PCPIPCH") %>% 
  rename(`WEO Country`=`WEO Countries group`)
forecast_gdp_cpi <- 
  rdb("IMF","WEO:latest",mask=".NGDP_RPCH+PCPIPCH") %>% 
  bind_rows(forecast_gdp_cpi_ea) %>% 
  transmute(Country=`WEO Country`,
            var=`WEO Subject`,
            value,
            period) %>% 
  mutate(Country=str_trim(Country),
         var=str_trim(var)) %>% 
  mutate(Country=case_when(Country=="United Kingdom" ~ "Britain",
                           Country=="Hong Kong SAR" ~ "Hong Kong",
                           Country=="Korea" ~ "South Korea",
                           Country=="Taiwan Province of China" ~ "Taiwan",
                           TRUE ~ Country),
         var=case_when(var=="Gross domestic product, constant prices" ~ "GDP",
                       var=="Inflation, average consumer prices" ~ "CPI",
                       TRUE ~ var))
forecast_gdp_cpi <- left_join(data.frame(Country=CountryList),forecast_gdp_cpi,by="Country")

Transform

gdp_yoy_latest_period <-
  gdp %>% 
  filter(MEASURE=="GYSA") %>% 
  filter(!is.na(value)) %>% 
  group_by(Country) %>% 
  summarise(period=max(period))
gdp_yoy_latest <-
  gdp %>% 
  filter(MEASURE=="GYSA") %>% 
  inner_join(gdp_yoy_latest_period) %>% 
  mutate(var="GDP",measure="latest")

gdp_qoq_latest_period <-
  gdp %>% 
  filter(MEASURE=="GPSA") %>% 
  filter(!is.na(value)) %>% 
  group_by(Country) %>% 
  summarise(period=max(period))
gdp_qoq_latest <-
  gdp %>% 
  filter(MEASURE=="GPSA") %>% 
  inner_join(gdp_qoq_latest_period) %>% 
  mutate(value=((1+value/100)^4-1)*100,
         var="GDP",
         measure="quarter")

gdp_2020_2021 <-
  forecast_gdp_cpi %>% 
  filter(var=="GDP" & (period=="2020-01-01" | period=="2021-01-01")) %>% 
  mutate(measure=as.character(year(period)))

indprod_latest_period <-
  indprod %>% 
  filter(!is.na(value)) %>% 
  group_by(Country) %>% 
  summarise(period=max(period))
indprod_latest <-
  indprod %>% 
  inner_join(indprod_latest_period) %>% 
  mutate(var="indprod",measure="latest")

cpi_latest_period <-
  cpi %>% 
  filter(!is.na(value)) %>% 
  group_by(Country) %>% 
  summarise(period=max(period))
cpi_latest <-
  cpi %>% 
  inner_join(cpi_latest_period) %>% 
  mutate(var="CPI",measure="latest")

cpi_2020 <-
  forecast_gdp_cpi %>% 
  filter(var=="CPI" & period=="2020-01-01") %>% 
  mutate(measure=as.character(year(period)))

unemp_latest_period <-
  unemp %>% 
  filter(!is.na(value)) %>% 
  group_by(Country) %>% 
  summarise(period=max(period))
unemp_latest <- 
  unemp %>% 
  inner_join(unemp_latest_period) %>% 
  mutate(var="unemp",measure="latest")

Merge

df_all <- 
  bind_rows(gdp_yoy_latest,gdp_qoq_latest,gdp_2020_2021,indprod_latest,cpi_latest,cpi_2020,unemp_latest) %>% 
  mutate(value=ifelse(value>=0,
                      paste0("+",sprintf("%.1f",round(value,1))),
                      sprintf("%.1f",round(value,1)))) %>% 
  unite(measure,c(var,measure))

df_latest <- 
  df_all %>% 
  filter(measure %in% c("GDP_latest","indprod_latest","CPI_latest","unemp_latest")) %>% 
  mutate(value=case_when(`@frequency`=="quarterly" ~ paste(value," Q",quarter(period),sep=""),
                         `@frequency`=="monthly" ~ paste(value," ",month(period,label = TRUE, abbr = TRUE, locale = "en_US.utf8"),sep=""),
                         `@frequency`=="annual" ~ paste(value," Year",sep=""),
                         TRUE ~ value)) %>% 
  mutate(value=text_spec(ifelse(year(period)==lastyear,paste0(value,footnote_marker_symbol(3)),
                                ifelse(year(period)==beforelastyear,paste0(value,footnote_marker_symbol(4)),value)),
                         link = paste("https://db.nomics.world",provider_code,dataset_code,series_code,sep = "/"), 
                         color = "#333333",escape = F,extra_css="text-decoration:none"))

df_final <- 
  df_all %>% 
  filter(measure %in% c("GDP_quarter","GDP_2020","GDP_2021","CPI_2020")) %>% 
  bind_rows(df_latest) %>% 
  mutate(Country=case_when(Country=="United Kingdom" ~ "Britain",
                           Country=="Euro area (19 countries)" ~ "Euro area",
                           Country=="China (People's Republic of)" ~ "China",
                           Country=="Korea" ~ "South Korea",
                           TRUE ~ Country)) %>% 
  select(Country,value,measure) %>% 
  spread(measure,value) %>% 
  select(Country,GDP_latest,GDP_quarter,GDP_2020,GDP_2021,indprod_latest,CPI_latest,CPI_2020,unemp_latest)

df_final <- left_join(data.frame(Country=CountryList),df_final,by="Country")

Display

names(df_final)[1] <- ""
names(df_final)[2] <- "latest"
names(df_final)[3] <- paste0("quarter",footnote_marker_symbol(1))
names(df_final)[4] <- paste0("2020",footnote_marker_symbol(2))
names(df_final)[5] <- paste0("2021",footnote_marker_symbol(2))
names(df_final)[6] <- "latest"
names(df_final)[7] <- "latest"
names(df_final)[8] <- paste0("2020",footnote_marker_symbol(2))
names(df_final)[9] <- "latest"

df_final %>% 
  kable(row.names = F,escape = F,align = c("l",rep("c",8)),caption = "Economic data (% change on year ago)") %>% 
  kable_styling(bootstrap_options = c("striped", "hover","responsive"), fixed_thead = T, font_size = 13) %>% 
  add_header_above(c(" " = 1, "Gross domestic product" = 4, "Industrial production  " = 1, "Consumer prices"= 2, "Unemployment rate, %"=1)) %>% 
  column_spec(1, bold = T) %>% 
  row_spec(seq(1,nrow(df_final),by=2), background = "#D5E4EB") %>% 
  row_spec(c(5,14,22,33,39),extra_css = "border-bottom: 1.2px solid") %>% 
  footnote(general = "DBnomics (Eurostat, ILO, IMF, OECD and national sources). Click on the figures in the `latest` columns to see the full time series.",
           general_title = "Source: ",
           footnote_as_chunk = T,
           symbol = c("% change on previous quarter, annual rate ", "IMF estimation/forecast", paste0(lastyear),paste0(beforelastyear)))

Bibliography

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2016. URL: https://www.R-project.org.

RStudio Team. RStudio: Integrated Development Environment for R. RStudio, Inc., Boston, MA, 2016. URL: http://www.rstudio.com/.